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Table 1. Data for copper(II) sulphate pentahydrate 

Cell parameters determined by Brooker & Nuffield (1966) 

a =6.122, b =10.695, c =5 .962A,  a=97 .58 , f l  =107.17,7 = 77.55 ° 
a* = 0.1740, b* = 0.0960, c* = 0.1760 /~-l,a* = 85.80, fl* = 74.00, },* = 100.75 o 

(a) Cell parameters obtained from ~0 measurements using three reflections 

Data from Hulme's (1966) Table 2 Results 

h k l  ~0 m h k l  ~o m h k l  c* a* 

101 81-0 02 1 83.8 [ 0 1  0.1760 86.1 
1 0 1 85-5 0 3 1 79.5 [ 0 1 0.1760 86.2 

[ I 103.0 03 1 108.0 1 [ 1 0.1756 85.7 
[ I 1 71.0 2 2 1 84.2 [ 2 1 0.1758 84.7 
1 [ 1 103.0 0 2 1 83.8 [ 0 1 0.1762 86.0 
03 1 79.5 [0  1 85.0 [ J 1 0.1765 86.2 

(b) Cell parameters 

h k l  
calculated from ~ derived from Brooker & Nuffield's data 

~ ~ , -  ~o 
3 8 0 0.7128 0.0732 
3 8 1 0.7860 (0.073) 
2 ") 0 0-6599 0.0193 
2 "I 1 0.6792 (0.019) 
(; 2 0 1.0520 --0.1034 
6 2 1 0.9486 (--0.103) 

C* ~* fl* 

0.1759 85.81 73.99 
(0.1758) (85.79) (74.06) 

73.9 
73.9 
74.5 
74.7 
73.7 
73.3 

Let 

then, 

tan p 
dl* 2 sin (~23 

d* 3 sin (ff12' 

~ - - T  O + T  
t a n ~ = t a n ( 4 5 - p ) t a n ~  (9) 

2 2 

The angles a and r can be calculated from their sum (8) and 
difference (9). Now, with three elements known in both 
triangles P2PI 0 and P2P3 O, the ( 's  can be calculated and 
c*, fl* and a* derived from (7). 

Examples 

The parameters c*, a*  and fl* of  copper(II) sulphate 
pentahydrate have been calculated for both methods 
described above. The data for this compound given by 
Brooker & Nuffield (1966) are quoted below. In Table l(a), 

the values of <Pro have been taken from Hulme's (1966) Table 
2 and these lead to estimates that are generally within 
+0 .3% for c* and +0.5 ° for a* and fl*. In Table l(b), the 
values of ~ have been calculated from Brooker & Nuffield 
data. The values of (~,kl -- ~k0) in parentheses have been 
rounded and give the parameters in parentheses: evidently, 
this method of estimation is not unduly sensitive to 
experimental errors. 

I am grateful to Professor D. Rogers for discussions. 
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Abstract 

It is shown that the azimuthal angle ~, of rotation around the 
diffraction vector and the four angles X0, X, ~0' and 90 - to, all 
belong to one right spherical triangle from which the new 
relations sin ~ = sin X sin (p' and cos ~o' = cos co cos ~ are 
derived. These angles are in fact related by ten trigonometric 
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equations which can also be derived by matrix methods. The 
setting angles for a full ~, rotation of 360 ° are easily 
determined when results of both methods are used together. 

Several methods have been proposed to calculate the setting 
angles to, X and (p for a given ~ rotation around the 
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diffraction vector. Busing & Levy (1967) and Hamilton 
(1974) derived the setting angles from various elements of R, 
the matrix product  of ~ X ~  which is equal to WX 0 ~0 when 
the bisecting position is used to define ~ = 0. Santoro & 
Zocchi  (1964), Arndt  & Willis (1966) and Wang,  Yoo, 
Pletcher & Sax (1976) deduced from Napierian triangles or 
tetrahedra a number  of simple trigonometric equations 
relating five angles co, 27, <p', 270 and ~. It appears that both the 
matrix and the geometric methods can be simplified, leading 
to an easier determination of the setting angles for a full ~, 
rotation of 360 °. Instead of two Napierian triangles (Arndt 
& Willis, 1966) or two tetrahedra (Wang, Yoo, Pletcher & 
Sax, 1976), it is shown that only one Napierian triangle needs 
to be considered. From it, one readily deduces the angles and 
their correct quadrants.  Their signs, difficult to ascertain by 
the trigonometric method, are then obtained from two 
equations derived from the simpler matrix relation ~2X~' = 

• X o. 
Let us consider (Fig. 1) a mobile orthogonal set of axes 

originating at the center of  the crystal, with O Y parallel to the 
diffraction vector and O Z  parallel to the 0 axis; O X  is thus 
directed toward the detector when 20 = 0. A r.1. point located 
at P when co* = 27 = 0 and q) is at a certain angle depending 
on the crystal orientation (the origin of ~0 is arbitrary) must 
be brought on to the O Y axis to be in the reflecting position. 
When co is kept at 0, this is done through two successive 
rotations tp0 and 270, corresponding to the path P G D ,  but, in 
doing so, the azimuth has not changed and ~ may be defined 
as 0 when co = 0. The azimuthal angle changes, however, 
when the path P G A M D  is followed (Santoro & Zocchi,  

• co is taken throughout this note to be zero when the bisecting 
mode is used, i.e. it follows Hamilton's (1974) first definition. 

z 

t D  ~0 

. .................... • ........ / 

¥ 

Fig. 1. Representation of the angles, all shown in the range 0 to 90 ° 
except ~00 (0 to -90°) .  Arrows indicate positive angles. ~ is 
positive for a clockwise rotation looking toward O along the 
diffraction vector. The axis of the X circle is shown coincident 
with the axis OX. This is true when the bisecting (symmetric) 
mode is used (o) = 0). It is also true for the asymmetric mode 
during the (o and Z rotations but the final oJ rotation moves the X 
axis away from OX. 

1964). This path corresponds to the successive rotations <p = 
tp 0 + ~0', then X along a small circle of  the sphere and, finally, 
co in the direction opposite to that of  40'. 

In practice, one wishes to determine the angles co, Z and q) 
for a particular reflection from its known values of Z0 and ~00 
and a chosen ~. When ~00, common to both routes, is not 
taken into consideration, only five angles are involved, and 
the problem reduces to the determination of co, X and q~' given 
%o and ~,. It is now shown how these five angles are related in 
one Napierian triangle. 

A trigonometric relation derived from matrices by 
Hamilton (1974), 

cos X = cos ~, cos 270, (1) 

indicates that a right spherical triangle may be constructed 
with sides 27o and ~, adjacent to the right angle C, and 27 
opposite to it. Since, in Fig. 1, the arc A C  represents angle 270 
and is perpendicular to the X Y  plane, ~ may be represented 
by an arc B C  in this plane: here B has been arbitrarily taken 
between C and D. Then 27 corresponds to the angle B O A  in 
the great circle A B .  Without resorting to spherical trigon- 
ometry,  the location of B can be found at the intersection of 
the main circle in the X Y  plane with a line drawn tangent at 
E to a circle (not drawn in the figure), centered at F, of radius 
E F  = OA (sin 2 27 -- sin 2 270) 1/2. Fig. 2 shows a classical 
construction allowing one to deduce the values of the 
spherical angles A = ~0' and B = 90 - co from plane 
trigonometry. The triangle A B C ,  in which a = ~, b = 270, c = 
27, A = q)' and B = 90 -- co, gives immediately all the 
formulae* previously derived by various methods:  

sin ~ = tan co tan X0 (2) 

sin co = tan ~ cot X (3) 

cos 27 = tan w cot ~0' (4) 

cos <p' = tan %0 cot % (5) 

sin X0 = tan ~, cot ~0' (6) 

* The signs may differ owing to different conventions for positive 
rotations. 

A 

\ 
/ L \ 

,il 
i f., l 

o'/7 p "l/ ~ 

B 

Fig. 2. Right spherical triangle with a = ~,, b = Xo, ¢ = X; 
construction showing that A = 40' and B = 90 - w. 
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sin o9 = sin ~' cos X0 (7) 

sin 2'0 = cos o9 sin 2'; (8) 

as well as two new relations: 

sin ~ = sin 2' sin (0' (9) 

cos ~' = cos 09 cos ~,. (10) 

The similarity between (1) and (10) may be noted. It 
indicates that the triangle ABC implies the existence of 
another triangle A'B 'C '  with a'  = 09, b' = ~, c' = ~0', A' = 
90 - 2'0 and B' = X (Arndt & Willis, 1966, Fig. 17, where 
three of the five elements were found). 

It is now shown that these ten relations can all be derived 
by matrix methods. Two routes, PGAMD and PGD, were 
described above to bring the point P on to the Y axis. A 
certain ~ rotation was associated with the first of these. 
Thus, the successive rotations of  the appropriate angles ~, X 
and co have an identical effect on the crystal orientation to 
that produced by the three successive rotations C0, 2'0 and ~,. 
If matrices are used to represent these rotations, one can 
write 

~ X @  = WX 0 @0, (11) 

where 

O = ( c o s ¢  s i n e  O / - s i n ¢  c o s ¢  0/0 0 1) 

X = ( 1  0 0/0 cos 2' sin 2"/0 - s i n x  cos 2') 

t p = ( c o s ~ ,  0 - s in~ , /O I O/sin~, 0 cos~,). 

0o, O' (see below) and ~ are obtained by replacing ~ in • 
by (0 o, (0' and -09, respectively. X and X o have the same form 
because at this stage OX still coincides with the 2' axis. 
Relation (11), which is identical to the relation obtained by 

, Busing & Levy (1967) in the particular case where ~, is 
defined to be 0 when o9 = 0, also allows one to deduce all 
Hamilton's  (1974) equations involving the azimuthal angle.* 

Taking into account  that ~ -- ~o o + ~', i.e. ~ = ~ '  ~0, (11) 
simplifies to 

f~XOP = WXo. (12) 

Expansion of M = D X ~ '  and N = WX o gives 

t COS 03 COS ~P 
+ sin o9 cos 2' sin ~' 

M = sin ogcos ~' 
-- cos 09 cos X sin ~o' 

sin X sin ~o' 

cos o9 sin ~' - s i n  o9 sin 2 ' \  
- sin 09 cos 2' cos ~' 

sin o9 sin ¢' COS oJ sin Z] ,  

+ cOS o9 Cos X cos ~pt cos X ! / 
- s i n  2' cos ~0' 

* The right-hand side of Hamilton's equation (2) in section 3.3.2 
should read cos X0 cos ~0 instead of cos X0 sin ~0. 

(~ os ~, sin ~, sin 2'0 - s i n  ~, cos Xo~ 

N = cos Xo sin Xo ] ! 

\ s in  ~, --cos ~, sin Xo cos ~ cos Zo/ 

Since M = N, m u = ntj and the ten Napierian equations are 
easily obtained in the same order as above: m33 =- n33; m13//23 
= n13m23, m13r/33 ~--- nl3m33; m21 = n21; m32//33 = r/32m33; 
m31r/32 = n31m32; m13n31 = n13m31; m23 = n23; m31 = n31; 
m23 n32 ~ n23 m32. 

The angles o9, 2' and ~0' may be calculated from (12) as 
follows: since ~, is chosen and 2'0 and ¢Po are known (e.g. by 
manually centering the reflection at co = 0), all nij are easily 
obtained and the angles co, 2' and ~o' are those which satisfy 
m u = n u. An easier procedure would be to use the properties 
of  Napierian triangles. The angles co, X and ~0' may first be 
calculated, e.g. by successive use of (2), (3) and (4). If the 
angles 2"o and o9 are limited to their usual range, 0 to 90 °, the 
laws of Napierian triangles indicate that 2', ~0' and ~, are all 
either acute or obtuse, irrespective of  their signs. The angles 
calculated from (2) - (4) are thus transformed if necessary 
to lie in their correct quadrant.  Their signs are then checked 
through the two following equations taken from (12). 

cos o9 cos ¢' + sin co cos X sin ~' = cos ~, (13) 

cos o9 sin ~0' -- sin o9 cos 2' cos ~' = sin ~, sin 2". (14) 

Only one set* of signs for o9, 2' and ~0' will satisfy their 
right-hand sides. For  example, the following data, Xo = 
39.55, ~0 o = 151.05 and ~, = 210 °, give for (2) - (4): 09 = 
- 3 1 . 1 9 ,  2'--- - 4 8 . 1 1  and ¢' = - 4 2 . 2 0  o. With ~v = 210 ° , 
equivalent to - 1 5 0  °, X and ¢' must both be obtuse, i.e. 
131.89 and 137.80 ° , respectively. Then (13) and (14) 
indicate that o9 and ~0' are both negative and 2' positive. The 
angles sought are thus: 09 = - 3 1 . 1 9 ,  2' = 131.89 and ~' = 
- 1 3 7 . 8 0  °. Finally, ~ = 13.25 ° is obtained from ~ = Co + ~0'. 

I thank Professor D. Rogers for discussions. 

* Of the four, oJ and ~0' must always have the same sign if, as in 
Fig. 1, their sense of positive rotation is opposite. 
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